Petroleum. Energy development

Composition The proportion of hydrocarbons in the mixture is highly variable and ranges from as much as 97% by weight in the lighter oils to as little as 50% in the heavier oils and bitumens. The hydrocarbons in crude oil are mostly alkanes, cycloalkanes and various aromatic hydrocarbons while the other organic compounds contain nitrogen, oxygen and sulfur, and trace amounts of metals such as iron, nickel, copper and vanadium. The exact molecular composition varies widely from formation to formation but the proportion of chemical elements vary over fairly narrow limits as follows: Carbon| 83-87%|

Hydrogen| 10-14%| Nitrogen| 0.1-2%| Oxygen| 0.1-1.5%| Sulfur| 0.5-6%| Metals| <1000 ppm| Crude oil varies greatly in appearance depending on its composition. It is usually black or dark brown (although it may be yellowish or even greenish). In the reservoir it is usually found in association with natural gas, which being lighter forms a gas cap over the petroleum, and saline water, which being heavier generally floats underneath it. Crude oil may also be found in semi-solid form mixed with sand, as in the Athabasca oil sands in Canada, where it may be referred to as crude bitumen.

Petroleum is used mostly, by volume, for producing fuel oil and gasoline (petrol), both important " primary energy" sources. 84% by volume of the hydrocarbons present in petroleum is converted into energy-rich fuels (petroleum-based fuels), including gasoline, diesel, jet, heating, and other fuel oils, and liquefied petroleum gas. Due to its high energy density, easy transportability and relative abundance, it has become the world's most important source of energy since the mid-1950s.

Petroleum is also the raw material for many chemical products, including pharmaceuticals, solvents, fertilizers, pesticides, and plastics; the 16% not used for energy production is converted into these other materials. Petroleum is found in porous rock formations in the upper strata of some areas of the Earth's crust. There is also petroleum in oil sands (tar sands). Known reserves of petroleum are typically estimated at around 190 km3 (1.2 trillion (short scale) barrels) without oil sands, or 595 km3 (3.74 trillion barrels) with oil sands.

Consumption is currently around 84 million barrels (13.4×106 m3) per day, or 4.9 km3 per year. Because the energy return over energy invested (EROEI) ratio of oil is constantly falling as petroleum recovery gets more difficult, recoverable oil reserves are significantly less than total oil-in-place. At current consumption levels, and assuming that oil will be consumed only from reservoirs, known recoverable reserves would be gone around 2039, potentially leading to a global energy crisis.

However, there are factors which may extend or reduce this estimate, including the rapidly increasing demand for petroleum in China, India, and other developing nations; new discoveries; energy conservation and use of alternative energy sources; and new economically viable exploitation of non-conventional oil sources.

Chemistry

Octane, a hydrocarbon found in petroleum, lines are single bonds, black spheres are carbon, white spheres are hydrogen Petroleum is a mixture of a very large number of different hydrocarbons; the most commonly found molecules are alkanes (linear or branched), cycloalkanes, aromatic hydrocarbons, or more complicated chemicals like asphaltenes. Each petroleum variety has a unique mix of molecules, which define its physical and chemical properties, like colour and viscosity.

The alkanes, also known as paraffins, are saturated hydrocarbons with straight or branched chains which contain only carbon and hydrogen and have the general formula CnH2n+2 They generally have from 5 to 40 carbon atoms per molecule, although trace amounts of shorter or longer molecules may be present in the mixture. The alkanes from pentane (C5H12) to octane (C8H18) are refined into gasoline (petrol), the ones from nonane (C9H20) to hexadecane (C16H34) into diesel fuel and kerosene (primary component of many types of jet fuel), and the ones from hexadecane upwards into fuel oil and lubricating oil.

At the heavier end of the range, paraffin wax is an alkane with approximately 25 carbon atoms, while asphalt has 35 and up, although these are usually cracked by modern refineries into more valuable products. Any shorter hydrocarbons are considered natural gas or natural gas liquids. The cycloalkanes, also known as napthenes, are saturated hydrocarbons which have one or more carbon rings to which hydrogen atoms are attached according to the formula CnH2n. Cycloalkanes have similar properties to alkanes but have higher boiling points. The aromatic hydrocarbons are unsaturated hydrocarbons which have one or more planar six-carbon rings called benzene rings, to which hydrogen atoms are attached with the formula CnHn. T

hey tend to burn with a sooty flame, and many have a sweet aroma. Some are carcinogenic. These different molecules are separated by fractional distillation at an oil refinery to produce gasoline, jet fuel, kerosene, and other hydrocarbons. For example 2,2,4-trimethylpentane (isooctane), widely used in gasoline, has a chemical formula of C8H18 and it reacts with oxygen exothermically:

The amount of various molecules in an oil sample can be determined in laboratory. The molecules are typically extracted in a solvent, then separated in a gas chromatograph, and finally determined with a suitable detector, such as a flame ionization detector or a mass spectrometer. Incomplete combustion of petroleum or gasoline results in production of toxic byproducts. Too little oxygen results in carbon monoxide. Due to high temperatures and high pressures involved exhaust gases from gasoline combustion